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Abstract: A new B ayesian approach to m ultistage hypothesis testing is considered. Prior
is derived using Jeffreys’ criterion on likelihood associated w ith the design inform ation.
W e show that the prior for sequentialB ernoullidesign asym ptotically converges tow ard the
Jeffreys prior in Pascalsam pling m odel. A generalrule is given for determ ining the design-
corrected version of default priors w hen Jeffreys’ criterion results in im proper distribution.
B ased on the principle of design im partiality, the B ayes factor as posterior-based evidential
m easure can be generalized to m ultistage testing, so thatthe decision boundaries reflectequal
evidence for hypotheses over stages. E ffect of prior correction on design param eters and
on B ayesian inference upon test term ination is studied. T he approach is applied to a three-
stage binom ialdesign. L ast, the use of the prior as the default objective choice in m ultistage
hypothesis testing is discussed.

Keywords: B ayes factor;F requentist characteristics;Jeffreys’ criterion;L ikelihood principle;
O bjective prior.
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1. INTRODUCTION

T he supposed link betw een B ayes’ rule and the likelihood principle has long
obscured the issue of the stopping rule influence in B ayesian testing. H ow ever, the
argum ent that the design inform ation has no inferentialvalue (see, e.g., B erger and
W olpert, 1988, p. 88) is not tenable for m any experim enters. T he so-called unified

conditional frequentist and Bayesian testing or unified testing (see B erger et al., 1994)
based on the B ayes factor offers an evocative exam ple. T he authors show ed thatthe
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2 Bunouf and Lecoutre

B ayesian errorprobabilitiesofhypothesesare also valid frequentistrisksconditional
on a partition of the outcom e space. In the extension to m ultistage designs, B erger
et al. (1999) observed that the unified testing ignores the design inform ation,
“seem ing to lend frequentist support to the stopping rule principle.” N evertheless,
it is w ell know n that m ultiple looks at data affect the (unconditional) frequentist
risks in long-run sam pling context. In the B ayesian setting, R osenbaum and R ubin
(1984) studied the influence ofdata-dependentstopping rule on coverage probability
of confidence (or credible) interval, and Spiegelhalter et al. (2004, Section 6.6.5)
exhibited the im pact on type 1 error in hypothesis testing.

H ow ever, based on a new form ulation of B ayes’ rule, de C ristofaro (2004)
show ed that explicit reference to the design is fully B ayesian justified and B ayesian
objectivity cannot ignore such inform ation. In this article, the unified testing is
generalized to m ultistage designs using a design-corrected version of the B ayes
factor. T he approach is based on prior derived using Jeffreys’criterion on likelihood
associated w ith the design. T he characteristicsofthe so-called corrected Jeffreys prior

(literally m odel-based Jeffreys prior corrected by the design inform ation) and the
corresponding B ayes factor are studied in one-param eter problem s. A m ong possible
candidate objective priors for m ultistage B ayesian analysis, the corrected Jeffreys
prior satisfies the principle of design im partiality, w hich is based on the property
of data-translated likelihood. M oreover, w e show that B ayesian inference upon test
term ination is corrected for the stopping rule influence.

T he derivation of the corrected Jeffreys prior and characteristics concerning
existence and dom ination are presented in the next section. W e show that the
corrected Jeffreys prior for sequential B ernoulli design asym ptotically converges
tow ard the Jeffreys prior in Pascal sam pling m odel. A general rule is given for
determ ining the design-corrected version of default priors w hen Jeffreys’ criterion
results in im proper distribution. T he corrected B ayes factor and the m ultistage test
are introduced in Section 3. Prior correction effect on design param eters is studied
in com posite hypothesis testing for continuous observations. W e also highlight a
risk of degeneracy phenom enon of the prior density in open design associated w ith
infinite stopping rule. Section 4 show s an application to a three-stage binom ial
design. T he application involves a study ofthe prior correction effecton the Jeffreys
confidence interval obtained upon test term ination. In the conclusion, w e return
to the role of the likelihood principle in experim ental research. T hen, w e discuss
the use of the corrected Jeffreys prior as the default objective choice in m ultistage
hypothesis testing. L ast, the extension to m ultiparam eter problem s is considered.

2. CORRECTED JE FFRE Y S PRIOR

W e consider the K-stage design d⊗K involving successive trials of nk i.i.d.
observations (1 ≤ k ≤ K) for inference on the one-dim ensional param eter � ∈ ä.
L etXk be the outcom e variable at stage k, w e suppose thatX4k5 = 4X11 X21 0 0 0 1 Xk5

is an independent sequence in the design d⊗K , w ith a know n density function
pk4x

4k5 � �1 d⊗K 5 that satisfies m inim um conditions of regularity. T he sequence X4k5

takes values in the outcom e space X
4k5 equipped w ith a �-algebra B

4k5. L et � be a
stopping rule consisting of probabilities �k4X

4k55 of stopping after x4k5 is observed.
W e denote the stopping stage variable by M (i.e., �k = P�4M = k5).
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Bayesian Multistage Hypothesis Testing 3

M ostofB ayesiansdealing w ith m ultistage designsare stillreluctantto transgress
the stopping rule principle (i.e., inference does not depend on the stopping rule
that governs the experim ent), in spite of explicit attem pts to incorporate the
design inform ation into priors (see, e.g., B ernardo and Sm ith, 1994). H ow ever, the
conditioning on the design isfully justified in the B ayesian approach. D e C ristofaro’s
form ulation of B ayes’ rule m akes explicit reference to the design d⊗K as a part of
the preexperim entalevidence. L et e0 contain the beliefs on the � values before the
experim entand letçk be a sequence ofpriorsabout�, B ayes’rule becom es

çk

(

� � x4k51 e01 d⊗K

)

∝ çk4� � e01 d⊗K 5pk

(

x4k5 � �1 e01 d⊗K

)

0 (2.1)

T hen, both the likelihood principle and its m ajor consequence the stopping rule
principle are no longer an autom atic consequence of B ayes’ rule. M oreover, (2.1)
show s thatprior ignorance cannotbe characterized w ithoutreference to the design.

B ayesian prior distribution allow s recovering a part of the inform ation
im plicitly contained in the design and lost in the likelihood. T he solution proposed
in this article is based on Jeffreys’ criterion, w hich agrees w ith the principle of
design im partiality (de C ristofaro, 2004): a design is im partial w ith respect to � if
the property of data-translated likelihood (i.e., the inform ation on � is contained
in the likelihood location only) introduced in B ox and T iao (1992) is satisfied or
approxim ately satisfied. T he use of Jeffreys’ criterion on likelihood associated w ith
the design yields a prior proportional to the naive (i.e., design-unrelated) Jeffreys
prior tim es E1/2

� 4M5 (see G ovindarajulu, 1981).
G ovindarajulu derived the prior from the design-associated likelihood

LA
(

�3x4m51 d⊗K

)

= 6L4�3x157
1m=1 × ···×

[

L
(

�3x4K5
)]1m=K 0

L etI4� � x4m55 be the F isher inform ation about� contained in x4m5 based on the naive
likelihood L4�3x4m55. T he F isher inform ation derived from the design-associated
likelihood is

I
(

� � x4m51 d⊗K

)

= −E�

[

¡2

�2
logLA

(

�3x4m51 d⊗K

)

]

= I4� � x15P�4M = 15+ ···+ I
(

� � x4K5
)

P�4M = K5

= I4� � x15
[

1+ n2

n1

P�4M ≥ 25+ ···+ nK

n1

P�4M = K5

]

= I4� � x15E�4M50 (2.2)

T he density of the corrected Jeffreys prior is proportionalto I4� � x4m5, d⊗K 51/2.
T he corrected Jeffreys prior reflects the degree of certainty associated w ith the
projected design d⊗K by overw eighing the probabilities about � values m ore likely
leading to late term ination. G reater is the certainty about a value of �, higher is its
initialprobability. C onsequently, posterior-based inference on � is corrected for the
stopping rule influence.

2.1. E xistence and Dom ination

T he existence of the corrected Jeffreys prior çCJ 4� �d⊗K 5 requires the expectation
of M to be bounded. T hen, if the density of the naive Jeffreys prior çJ 4�5 is
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4 Bunouf and Lecoutre

integrable over ä, the corrected version is proper (i.e.,
∫

ä
d4çCJ 4� �d⊗K 55 < �).

H ow ever, im proper Jeffreys priors can be asym ptotically approached by proper
corrected Jeffreys priors using truncation m ethod.

W e illustrate such truncation m ethod in the Pascal (or inverse binom ial)
sam pling m odelassociated w ith the design dPas. T he stopping rule in the design dPas

is infinite (i.e., P�4M < �5 6= 1 a.s. w hen � → 0) and Jeffreys’criterion results in the
im proper Be

(

01 1
2

)

prior distribution.

Theorem 2.1. Let us consider the K-stage Bernoulli design dBer⊗K for an experiment

based on successive Bernoulli trials Yk = 01 1 (k = 11 0 0 0 1 K) with early stopping if the

outcome is observed (i.e., Yk = 1). The Pascal sampling model describes the distribution

of the outcome occurrence in dBer⊗K when K → �.

Proof. T he corrected Jeffreys prior for the design dBer⊗K is

çCJ 4� �dBer⊗K 5 ∝ �−
1
2 41− �5−

1
2 41+ 41− �5+ ···+ 41− �5K−15

1
2

= �−
1
2 41− �5−

1
2

(

1− 41− �5K

�

)
1
2

0 (2.3)

W hen K → �, the proper density ofthe corrected Jeffreys prior fordBer⊗K tends
to the im proper density of the Jeffreys prior for dPas, i.e.,

lim
K→�

çCJ 4� �dBer⊗K 5 → çJ 4� �dPas5 ∼ Be

(

01
1

2

)

0

F orm ally, the stopping stage M ′ = inf8k 2 Yk = 1 or k = K9 in dBer⊗K is a
truncation of the stopping stage in dPas. �

C om pared to the sym m etric density of the naive Jeffreys prior Be
(

1
2
1 1
2

)

, the
unnorm alized density in (2.3) assigns higher probabilities to the low values of � as
K increases. T he corrected Jeffreys prior com pensates the positive bias induced by
the stopping rule in the design dBer⊗K on the m axim um likelihood estim ator (MLE),
w hich is �̂ML = 1/M .

T he bias of the MLE in dBer⊗K is

EdBer⊗K 1�

(

1

M

)

− � =
K
∑

k=1

41− �5k−1�
1

k
− � =

K
∑

k=2

41− �5k−1�
1

k
> 00 (2.4)

M axim a ofboth the bias oftheMLE (2.4) and the prior correction effectin (2.3) are
reached w hen K → �. T hen, the stopping stage M follow s a geom etric distribution
and the bias of the MLE is deduced from

EdPas1�

(

1

M

)

= �

1− �
log

1

�
0

In the regular case, naive Jeffreys prior pertains to a class of continuous and
positive densities that have polynom ial m ajorants and benefit of good properties
for the derivation of proper posteriors (despite there is no general statem ent).
H ow ever, the naive Jeffreys prior is often im proper w hen the param eter space is
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Bayesian Multistage Hypothesis Testing 5

unbounded. In that case, the corrected Jeffreys prior is also im proper. T he proof is
straightforw ard from (2.2). T he corrective term E�4M51/2 is bounded and adm its the
m ajorant function E�4M5. T hen, one easily derives a polynom ialapproxim ation of
E�4M51/2, w hich is function ofthe term sP�4M ≥ k5 (k = 21 0 0 0 1 K) and also contains
a constantterm . C onsequently, the corrected Jeffreys prior adm its a m ixture density
including the im proper com ponentd4çJ 4�55.

V arious alternatives have been suggested w hen Jeffreys’ criterion results in
the im proper uniform distribution such as in the norm al case (see, e.g., Jeffreys,
1961). T hese alternatives are often proper ‘diffuse’ priors reflecting a status of
objectivity. A pproxim ate design-corrected version of such default priors can be
obtained using the correction transposition rule, w hich consists in transposing the
corrective term from the im proper Jeffreys prior to default priors. U nnorm alized
densities are obtained by m ultiplying default prior densities by E�4M51/2 borrow ed
from the corrected Jeffreys prior (see an illustration in the next section). Jeffreys’
criterion im poses a condition on the param eter so that the likelihood locally and
approxim ately undergoes a translation for different observations. T his condition
is m aintained using the correction transposition rule if default prior densities are
sufficiently spread-out, so that their design-corrected versions satisfy the principle
of design im partiality.

T he dom ination of the likelihood by the prior is another im portant
characteristic. In objective B ayesian analysis, the influence of naive priors is
usually low and disappears as the observed sam ple size increases. C onversely, the
correction effect of the corrected Jeffreys prior depends on the variation in � of the
likelihood relative to integralform s ofpk4x

4k5 � �1 d⊗K 5 (k = 11 0 0 0 1 K − 1). T he proof
is straightforw ard from (2.2). T he corrective term E�4M51/2 depends on P�4M ≥
k5 =

∫

J⊗k−1 pk−14x
4k−15 � �1 d⊗K 5dx4k−15 (k = 21 0 0 0 1 K) w here J⊗k−1 = J1 × ···× Jk−1 is

the k− 1-dim ensionalsupport of the outcom e sequences.

3. CORRECTED BAY ES FACTOR TEST

T he recours to objective priors in hypothesis testing is lim ited as the division
of the param eter space in tw o disjoint subsets contradicts this concept (R obert,
2001). H ow ever, stopping rule favors one of the hypotheses if the param eter
subspace contains the � values that are the m ost associated w ith early term ination.
C onsequently, prior objectivity in the sense ofensuring equalsupportto hypotheses
shouldn’t ignore the design inform ation.

T he stopping rule is often based on the decision rule concerning hypotheses
such as in the fam iliar sequentialprobability ratio test (SPR T ) introduced in W ald
(1947). F orm ally, the decision rule D takes values DA and DR such that the
events 8D = DA ∩M = m9 and 8D = DR ∩M = m9 are determ ined by x4m5 for each
m. T he density pm4x

4m5 � �1 d⊗K 5 in the design d⊗K is then the restriction of the
unique probability m easure defined on the sm allestsigm a algebra containing allthe
�-algebra B

4k5 (k = 11 0 0 0 1 K) to the one associated w ith a term ination at stage m.
T he objectivist B ayesians prefer using the B ayes factor, noted Bk, w hich is

irrespective of the relative prior w eights of hypotheses. T he m ultistage experim ent
stops w hen Bk provides enough evidence for decision-m aking. F or the set of
com posite hypotheses

H0 2 � ∈ ä0 versus H1 2 � ∈ ä11 4ä0 ∩ä1 = ∅51
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6 Bunouf and Lecoutre

the stopping stage is

M = m in8k ≥ 1 2 Bk y 4R1A5 or k = K91

w here the H0 rejection region is such that 8D = DR ∩M = m9 = 8Bm ≤ R9 and the
H0 acceptance region is such that 8D = DA ∩M = m9 = 8Bm ≥ A9 (R ≤ 1 ≤ A).

T he prior predictive distribution based on the corrected Jeffreys prior under
Hi (i = 01 1), âCJ

Hi1k
2 B4k5 → 601 17, describes an expectation concerning x4k5 associated

w ith the data generation process and the design, i.e.,

âCJ
Hi1k

(

x4k5 �d⊗K

)

=
∫

äi

pk4x
4k5 � �1 d⊗K 5çCJ 4� �d⊗K 5d�0 (3.1)

Subsequently, w e define the corrected B ayes factor BCJ
k as

BCJ
k = âCJ

H01k

(

x4k5 �d⊗K

)

/âCJ
H11k

(

x4k5 �d⊗K

)

0

T he param eters of the design d⊗K are determ ined by the test based on the
corrected B ayes factor in D efinition 3.1. T he reported errors are the posterior
probabilities of hypotheses.

Definition 3.1. C orrected B ayes factor test (C B F T )
IfBCJ

k ≤ R, stop, rejectH0 and report the error �4x4k5 �d⊗K 5 = BCJ
k /41+ BCJ

k 5,
ifBCJ

k ≥ A, stop, acceptH0 and report the error �4x4k5 �d⊗K 5 = 1/41+ BCJ
k 5.

O therw ise, if k ≤ K continue to stage k+ 1, or if k = K m ake no decision.

W hen the stopping rule is finite, the B ayesian error probabilities of the CBFT

are also valid risks in the conditionalfrequentist approach (see, e.g., B erger et al.,
1997, D ass and B erger, 2003, for the extension to com posite hypothesis testing).
T he (ancillary) conditioning statistic is a one-one transform ation of m that yields
a partitioning of the outcom e sequences support in tw o subsets characterizing the
sam e evidence for H0 and H1. T he principle of com bining B ayesian-frequentist
approaches in the unified testing w as em phasized in B ayarriand B erger (2004).

H ow ever, the experim ental design influences posterior-based evidential
m easures such as the B ayes factor because early stopping happens only w hen
outcom e sequence is sufficiently indicative of one hypothesis. D espite the stopping
rule, strict application of the likelihood principle im poses the use of naive priors.
R elaxing this principle, the corrected Jeffreys prior assigns higher density m ass
to � values associated w ith later expected stopping stage relative to the naive
Jeffreys prior. Prior predictive distributions carry the prior correction to the
B ayes factor. B ased on the principle of design im partiality, the corrected B ayes
factor is a valid evidential m easure, so that the decision boundaries of the CBFT

reflect equal evidence for hypotheses over stages. T he prior correction effect on
design param eters radically differs from the unconditional frequentist approach,
w hich aim s at preserving nom inal risks in long-run sam pling context. T he CBFT

generalizes the unified testing to m ultistage designs using appropriate priors.
A s for any test based on the B ayes factor, a m ajor issue w ith the CBFT

arises w hen prior is im proper as the prior predictive distributions under hypotheses
in (3.1) cannot be derived. A s m entioned in Section 2.1, if the naive Jeffreys prior
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Bayesian Multistage Hypothesis Testing 7

is im proper, the corrected Jeffreys prior is also im proper. Such situation can be
overcom e w ith the use of default prior w ith flat or diffuse density. T hen, its design-
corrected version is derived using the correction transposition rule.

T his case is illustrated for a tw o-stage experim ent involving tw o sets of 10
i.i.d. N 4�1 15 observations to test the point null hypothesis H0 2 8� = 09 versus the
com posite alternative H1 2 8� > 09. T he naive Jeffreys prior under alternative is
the im proper uniform distribution. T he default prior is the half norm alHN 401 25
distribution, w hich is proportional to the norm al N 401 25 for positive values (see
argum ents in B erger and Sellke, 1987). W e set the values A = R−1 = 5 and assign
equalprior probabilities to H0 and H1. L etZ1 be the m ean at stage 1, Z2 the m ean
accrued until stage 2, and ê the cum ulative distribution function of the standard
norm allaw . T he density ofthe corrected Jeffreys prior is proportionalto E

1/2
� 4M5 =

41+ n2/n1ê4
√
n14Z1 − �5 ∈ J1555

1/2, w here J1 is the interval for
√
n1Z1 such that

BCJ
1 ∈ 4R1A5. A ccording to the correction transposition rule, the density of the

design-corrected HN 401 25 priorisproportionalto exp4−�2/25E1/2
� 4M5. Its derivation

requires an iterative procedure as the stopping rule is part of the prior. T he curves
of prior and prior predictive densities underH1 are displayed in F igure 1. F 1

T he prior correction causes an increase of prior predictive density m ass for zk
(k = 11 2) generated by � values m ore associated w ith expected term ination atstage
2. L et zAk and zRk (k = 11 2) be the boundaries ofZk for acceptance and rejection of
the nullhypothesis, respectively. W e obtain 4zA1 1 z

R
1 5 = 4−00301 00665 and 4zA2 1 z

R
2 5 =

4−00081 00695 in the corrected approach instead of 4−00201 00675 and 4−00031 00695
in the naive approach.

B eyond the decision to ‘accept’ or ‘reject’ H0, experim enter is concerned w ith
the m agnitude of the param eter irrespective of w hether the test declares statistical
significance. In the long-run frequentist context, the departure of coverage function
from the nom inal level is indicative of the stopping rule influence on confidence
(or credible) intervals. L et [̂�low 1+�) and (−�1 �̂upp] be the one-sided confidence
intervals and consider the sufficient bivariate statistic (M1Ym) w here Ym is the
outcom e accrued untilstage m. T he coverage functions of both intervals are

Clow 4�3d⊗K 5 = P�6� ≥ �̂low 4M1 Ym57 and Cupp4�3d⊗K 5 = P�6� ≤ �̂upp4M1 Ym570
(3.2)

Figure 1. N aive (- - -) and design-corrected (— ) HN 401 25 prior densities underH1 2 8� > 09
(left) and prior predictive densities in the support of zk under stopping at stage k = 11 2
(right) for the tw o-stage design w ith A = R−1 = 5 and n1 = n2 = 10.
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8 Bunouf and Lecoutre

In (3.2), the prior correction corrects coverage function of the one-sided Jeffreys
confidence intervals for the stopping rule influence w hatever � ∈ ä if, for any couple
of possible pairs (m1 ym) and (m′1 y′m′ ), the ordering of the confidence lim its is the
sam e using the naive and the corrected Jeffreys priors. T his condition is satisfied
in m any m ultistage designs for lattice data (see application to the binom ialcase in
Section 4).

3.1. Prior Correction E ffect on Design Param eters

T he case of open designs (K → �) raises the question of the finiteness of the
stopping rule. T his characteristic has been explored for the SPRT for a long
tim e. Stein (1946) show ed that the stopping stage for testing point hypotheses
is exponentially bounded (i.e., satisfies P�4M > n5 < c�n for som e c < � and
0 < � < 1) except if the log probability ratio is degenerate at 0. In com posite
hypothesis testing, W ald suggested a reduction to point hypothesis by m eans of
w eight function. If a group of invariance transform ations exists for such reduction,
W ijsm an (1971) gave sufficient conditions on observation distribution for the
stopping rule to be finite. In this section, the effectofprior correction on param eters
ofK-stage CBFT -based designs is studied as K increases. T hen, w e highlight a risk
of degeneracy phenom enon of the corrected Jeffreys prior in open design.

Theorem 3.1. The increase of K in K-stage CBFT -based symmetric design for

composite hypotheses of the type H0 2 8� ≥ �09 versus H1 2 8� < �09 for continuous

outcome yields more conservative decision boundaries (i.e., wider non decision region).

Proof. L et d
Sym
⊗K be a K-stage sym m etric CBFT -based design for continuous

outcom es Xk w ith fixed values ofA and R, such thatA = R−1. T o ease the reading,
the corrected B ayes factor in d

Sym
⊗K is noted BK

k in this section, and S
K denotes the

supportofX4k5 (k = 11 0 0 0 1 K) such thatA < BK
k < R (k = 11 0 0 0 1 K − 1). W e assum e

thatnaive Jeffreys prior under hypothesis is notdegenerate. In the param eter space,
� is the com m on boundary of the closures ofä0 and ä1. W e note by M4�1 �5 the
�-neighborhood of� defined as the setofall� ∈ ä such that��− �� < �. B ased on
a fixed positive scalar �, w e also introduce �K in M4�1 �K5, w hich is the m axim um
neighborhood w idth such thatd4çCJ 4� �dSym

⊗K 55 ≥ � w hatever � ∈ M4�1 �K5 ∩äi (i =
01 1). In the K + 1-stage design d

Sym
⊗K+1 , the related quantities are BK+1

k , SK+1, w hich
is the support of X4k5 (k = 11 0 0 0 1 K + 1) such that A < BK+1

k < R (k = 11 0 0 0 1 K),
and �K+1. W e also define S

K+1∗ as the K-dim ensional restriction of SK+1 for X4k5

(k= 11 0 0 0 1 K) in the design d
Sym
⊗K+1 .

R elative to the design d
Sym
⊗K , the additional stage K + 1 in d

Sym
⊗K+1 causes an

increase of E�4M5 around � = �. T he density m ass of the corrected Jeffreys prior
concentrates so that if a sufficiently narrow neighborhood of � is considered, w e
have the relation �K+1 ≤ �K w hatever � > 0. C onsequently, the density m ass ofboth
prior predictive distributions under H0 and H1 increases for the set of X4k5 that
provides the poorest evidence for hypotheses. T his yields sm aller am plitude of the
corrected B ayes factor (i.e., �BK+1

k − 1� < �BK
k − 1�, k = 11 0 0 0 1 K) and extension of

the support ofX4k5 (k = 11 0 0 0 1 K) (i.e., SK ∈ S
K+1∗). �
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Corollary 3.1. The corrected Jeffreys prior associated with C BFT-based symmetric

design can degenerate in open design.

Proof. T he proof follow s the proof of T heorem 3.1. A s K increases, the prior
correction assigns w eight on narrow ing neighborhood of �. If E�4M5 does not
converge tow ard a finite function w hen K → �, a degeneracy phenom enon of
the prior density occurs at � = � (i.e., �� → 0 w hatever � > 0). F rom (2.2),
the asym ptotic behavior of E�4M5 results from tw o opposite contributions w hen
going from the design d

Sym
⊗K to d

Sym
⊗K+1:the term 8nK+1/n1P�4M = K + 159 generates a

‘concentration effect’ around � = � w hereas the other term 81+ n2/n1P�4M ≥ 25+
···+ nK/n1P�4M ≥ K59 generates a ‘flattening effect’ caused by the extension of
S

K+1∗ relative to S
K . C onvergence occurs if the flattening effect annihilates the

concentration effect as K increases. D egeneracy phenom enon of the corrected
Jeffreys prior in open design d

Sym
⊗� is associated w ith infinite stopping rule.

C onsequently, w e have B�
k → 1 (k = 11 0 0 0 ) and infinite extension ofthe supportS�.

�

4. APPLICATION TO THE BINOMIAL CASE

L et us note dBin⊗K the K-stage binom ialdesign involving sequences of independent
outcom es Xk ∼ Bin4�1 nk = 105. T he testing hypotheses are H0 2 8� ≤ 0039 versus
H1 2 8� > 0039. T he design param eters are based on the values A = 19 and R= 1/19
associated w ith the nom inal level �∗ = �∗ = 0005 for the type 1 and 2 error
probabilities.

L et Yk =
∑k

i=1 Xi be the cum ulated num ber of successes until stage k

(k= 11 0 0 0 1 K), the boundaries ofYk for acceptance and rejection ofH0 are noted yAk
and yRk , respectively. T he stopping rule is determ ined by P�4M ≥ k5 (k = 21 0 0 0 1 K),
w hich is the sum of probabilities

p
(

x4i5 � �
)

=
(

n1

x1

)

···
(

ni

xi

)

�yi41− �5n1+···+ni− yi

for x4i5 in the k− 1-dim ensionalsupport restriction

S
Bin⊗K

k =
{

x4i5 2 yAi < yi < yRi 3i = 11 0 0 0 1 k− 1
}

0

T able 1 show s the design boundaries of the naive test and the CBFT for the T 1

3-stage design dBin⊗3 and 5-stage design dBin⊗5 .

Table 1. D ecision boundaries of the naive test and the CBFT for the
designs dBin⊗3 and dBin⊗5

(yA1 1 y
R
1 ) (yA2 1 y

R
2 ) (yA3 1 y

R
3 ) (yA4 1 y

R
4 ) (yA5 1 y

R
5 )

N aive test (11 6) (31 10) (51 14) (81 18) (101 22)
CBFT in dBin⊗3 (01 6) (31 11) (51 14)
CBFT in dBin⊗5 (01 7) (21 11) (51 14) (71 18) (101 22)
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10 Bunouf and Lecoutre

A lthough the scope of T heorem 3.1 lim its to continuous outcom e, the increase

ofK value in the K-stage CBFT -based dBin⊗K design has the sam e influence on the

decision boundaries w ith an increase of the non decision region. T he determ ination

of the set of the CBFT boundaries for the design dBin⊗5 reveals a practicalissue in

the iterative process. T he im plem entation in the prior ofthe design inform ation w ith

4yA1 1 y
R
1 5 = 401 65 for the first stage results in the boundaries 4yA1 1 y

R
1 5 = 401 75, even

though the im plem entation of 4yA1 1 y
R
1 5 = 401 75 in the prior results in the boundaries

4yA1 1 y
R
1 5 = 401 65. T he boundaries 4yA1 1 y

R
1 5 = 401 75 are kept as the first situation

appears to be the less contradictory.

Table 2. B ayes factor, test decision, and lim its of the one-sided 95% Jeffreys confidence
intervals using approaches based on the naive and the corrected Jeffreys priors for allpairs
(m1 ym) in dBin⊗3 design

N aive approach C orrected approach

(m1 ym) Bm H0 95% C I Bm H0 95% C I

(1, 0) 248 A cc (0.0002, 0.171) 159 A cc (0.0002, 0.193)
(1, 1) 21.5 A cc (0.018, 0.331) – – –
(2, 1) – – – 414 A cc (0.010, 0.191)
(2, 2) 95.6 A cc (0.029, 0.250) 71.4 A cc (0.032, 0.260)
(2, 3) 24.8 A cc (0.056, 0.314) 19.9 A cc (0.061, 0.319)
(3, 4) 96.9 A cc (0.057, 0.259) 75.8 A cc (0.061, 0.265)
(3, 5) 32.9 A cc (0.079, 0.299) 26.8 A cc (0.083, 0.304)
(3, 6) 13.4 N D (0.103, 0.338) 11.3 N D (0.107, 0.340)
(3, 7) 6.21 N D (0.127, 0.375) 5.37 N D (0.132, 0.376)
(3, 8) 3.11 N D (0.153, 0.412) 2.75 N D (0.157, 0.410)
(3, 9) 1.64 N D (0.180, 0.448) 1.47 N D (0.182, 0.444)
(3, 10) 0.870 N D (0.207, 0.482) 0.794 N D (0.208, 0.477)
(3, 11) 0.455 N D (0.235, 0.516) 0.422 N D (0.236, 0.509)
(3, 12) 0.228 N D (0.264, 0.550) 0.216 N D (0.263, 0.541)
(3, 13) 0.107 N D (0.323, 0.582) 0.104 N D (0.291, 0.573)
(3, 14) 0.046 R ej (0.324, 0.614) 0.047 R ej (0.320, 0.604)
(3, 15) 0.018 R ej (0.354, 0.645) 0.019 R ej (0.349, 0.635)
(3, 16) 0.006 R ej (0.386, 0.676) 0.007 R ej (0.379, 0.667)
(3, 17) 0.002 R ej (0.418, 0.706) 0.002 R ej (0.409, 0.698)
(3, 18) 505× 10−4 R ej (0.450, 0.736) 605× 10−4 R ej (0.440, 0.728)
(3, 19) 103× 10−4 R ej (0.484, 0.765) 107× 10−4 R ej (0.473, 0.759)
(3, 20) – – – 307× 10−5 R ej (0.506, 0.788)
(2, 10) 0.052 R ej (0.324, 0.676) – – –
(2, 11) 0.017 R ej (0.370, 0.720) 0.018 R ej (0.360, 0.708)
(2, 12) 0.004 R ej (0.417, 0.762) 0.005 R ej (0.405, 0.753)
(2, 13) 0.001 R ej (0.467, 0.803) 0.001 R ej (0.452, 0.796)
(2, 14) 109× 10−4 R ej (0.518, 0.842) 204× 10−4 R ej (0.502, 0.837)
(2, 15) 207× 10−5 R ej (0.571, 0.878) 307× 10−5 R ej (0.557, 0.876)
(1, 6) 0.041 R ej (0.347, 0.815) 0.047 R ej (0.331, 0.802)
(1, 7) 0.007 R ej (0.442, 0.883) 0.009 R ej (0.418, 0.876)
(1, 8) 808× 10−4 R ej (0.547, 0.940) 0.001 R ej (0.522, 0.938)
(1, 9) 507× 10−5 R ej (0.669, 0.982) 802× 10−5 R ej (0.653, 0.982)
(1, 10) 101× 10−6 R ej (0.829, 0.999) 107× 10−6 R ej (0.826, 0.999)

A cc= accept;N D = no decision;and R ej= reject.
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Figure 2. C overage functions of the upper lim it (top) and the low er lim it (bottom ) one-
sided 95% Jeffreys confidence intervals obtained using the naive (- - -) and the corrected (— )
Jeffreys priors in the CBTF -based dBin⊗3 design.

T able 2 presents global results using approaches based on the naive and the T 2

corrected Jeffreyspriorsforallpairs (m1 ym) in the 3-stage design dBin⊗3 . B ayesfactor,
testdecision, and lim itsofthe one-sided 95% Jeffreysconfidence intervalsare given.

C overage function of one-sided Jeffreys confidence interval for binom ial fixed
sam ple w as approached in C ai (2005). F igure 2 displays the coverage curves F 2

of the one-sided 90% Jeffreys confidence intervals obtained using the naive and
the corrected Jeffreys priors in the CBFT -based dBin⊗3 design. T he curves present
discontinuities at the confidence lim its of all pairs (m1 ym). T he stopping rule
influence on the coverage function of the upper lim it confidence intervalresults in
under- and overestim ation of the nom inallevelfor increasing values of �, and the
inverse for the low er lim it confidence interval. T his influence is m ore m arked in
the neighborhood of the confidence lim its of the stopping boundary pairs (k1 yAk )
or (k1 yRk ) (k = 11 2). F rom T able 2, the ordering of the confidence lim its of all
pairs (m1 ym) is the sam e using the naive and the corrected Jeffreys priors (N ote:
confidence lim itsofthe pairs (21 1) and (31 20) obtained using the naive Jeffreysprior
in the CBFT -based dBin⊗3 design are (0000891 00180) and (005181 00793), respectively).
B ased on argum ents developed in Section 3, the prior correction effect corrects
coverage functions for the stopping rule influence w hatever �.

T he use of the corrected Jeffreys prior for point estim ation is coherent if this
prior is already used for hypothesis testing and interval estim ation. H ow ever, the
posterior m ean estim ator based on the corrected version of H aldane’s prior offers
an interesting alternative in term s of frequentist characteristics (see B unouf and
L ecoutre, 2008). T his prior is also derived using the F isher inform ation of design-
associated likelihood but the density is proportional to I4� � x4m51 d⊗K 5 instead of
I4� � x4m51 d⊗K 51/2 for the corrected Jeffreys prior.
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5. CONCLUDING REMARKS

B ayesian approach has never provided a satisfactory answ er to the issue of the
stopping rule influence in m ultistage design. T he supposed link betw een B ayes’rule
and the likelihood principle (or its m ajor consequence the stopping rule principle)
has long been a pill hard to sw allow for experim enters w illing to adopt B ayesian
m ethods. O ne m ay interpret that B ayesian designs are open to unscrupulous
m anipulation as the experim enter is allow ed to choose the stopping stage w ithout
form alrule. A s underlined by Spiegelhalter (2006), the controversy is illustrated in
a recentF ood and D rug A dm inistration (F D A ) draftguidance (F D A , 2006), w hich
advocates that “the design of a B ayesian clinical trial involves pre-specification of
(and agreem enton) both the prior inform ation and the m odel. 40 0 0 5 A change 40 0 0 5
at a later stage of the trialm ay im perilthe scientific validity of the trialresults.”

B ased on de C ristofaro’s form ulation ofB ayes’rule, objective B ayesian analysis
cannot depart from design considerations (de C ristofaro, 2004). M oreover, any
candidate prior should satisfy the principle ofdesign im partiality and yield posterior
credible sets that have good frequentist coverage properties (de C ristofaro, 2008).
A s m entioned in K ass and W asserm an (1996), assignm ents of prior probabilities
by form alrules cannot be expected to represent exactly totalignorance. H ow ever,
in this article w e show that the corrected Jeffreys prior has the required properties
to be one of the default priors reflecting objectivity upon w hich everyone could
fallback w hen the design inform ation is available prior to the experim ent. A large
diffusion of this prior in m ultistage hypothesis testing w ill require further results
concerning the prior characteristics in open design and the prior correction effect
on design param eters for severalcom m on data distributions.

T he extension of the corrected Jeffreys prior to m ultiparam eter problem s
requires further considerations. Jeffreys’ criterion for a p-dim ensional vector ä

yields a prior density proportional to E
p/2
ä 4M5çJ 4ä5 w here çJ 4ä5 is the naive

Jeffreys prior of X1 (G ovindarajulu, 1981). B ox and T iao (1992, p. 53) show ed
thatthe property ofdata-translated likelihood rem ains approxim ately valid, so that
the principle of design im partiality can be extended to m ultiparam eter problem s.
H ow ever, the issue of separation betw een param eters of interest and nuisance
param eters has raised controversies initiated by Jeffreys him self, w hich he answ ered
by suggesting a collection of ad hoc rules (Jeffreys, 1961). T he im portance of
this issue is am plified in the corrected Jeffreys prior due to the dependency
of the corrective term on the dim ension of the w hole param eter space. Several
authors have developed alternative priors, such as the reference prior based on
the m axim um -entropy property (see, e.g., B ernardo and Sm ith, 1994). D esign-
corrected version can be derived from the design-associated likelihood. Suppose that
ä= 4ä4151 0 0 0 1 ä4q55 is a q-ordered group w here the dim ension of com ponent ä4i5

is pi for 1 ≤ i ≤ q and assum e that the stopping rule depends only on ä415. T he
rule based on the m axim um -entropy property yields a prior density proportionalto
E

p1/2
ä 4M5çR4ä5, w hereçR4ä5 isthe naive reference priorofX1 (Y e, 1993). R eference

priors for som e com m on m ultiparam eter m ultistage problem s are given in Sun and
B erger (2008). T he dependency of the prior correction on the dim ension of ä415

provides a sound argum ent for using this prior in hypothesis testing, given that it
coincides w ith the corrected Jeffreys prior in one-param eter problem s. H ow ever,
such a perspective requires an extension of the principle of design im partiality and
further research to assess the prior correction effect on testing design param eters.
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